
DESIGN PATTERNS USING COMPONENT-

BASED SOFTWARE DEVELOPMENT

A dissertation submitted to The University of

Manchester for the degree of Master of Science by

Research/Master of Enterprise

In the Faculty of Computer Science

2009

Arsalan Sadri

School of Computer Science

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 2

‎1 table of figures

Contents

1. TABLE OF FIGURES ... 4

2. FORMATTING AND KEYWORDS ... 7

3. ABSTRACT .. 8

4. DECLARATION .. 9

5. COPYRIGHT STATEMENT ... 10

6. ACKNOWLEDGEMENT .. 11

7. INTRODUCTION .. 12

8. COMPONENT-BASED SOFTWARE DEVELOPMENT 14

8.1. MOTIVATIONS .. 14

8.2. CONCEPT OF COMPONENT ... 15

8.2.1. PROPERTIES OF A COMPONENT ... 16

8.3. SOFTWARE REUSE .. 17

8.3.1. SOFTWARE REUSE REQUIREMENTS .. 17

8.3.2. SOFTWARE REUSE BARRIERS .. 19

8.4. COMPONENT MODELS ... 20

8.4.1. AN OVERALL LOOK ... 20

8.4.2. AN IDEALIZED COMPONENT MODEL ... 24

8.4.3. THE COMPONENT MODEL .. 24

9. DESIGN PATTERNS IN OBJECT-ORIENTED PROGRAMMING 27

9.1. OVERVIEW ... 27

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 3

‎1 table of figures

9.2. ALL ABOUT PATTERNS ... 28

9.2.1. WHY DESIGN PATTERNS AT ALL? ... 28

9.2.2. STANDARD DESCRIPTIONS ... 29

9.2.3. INGREDIENTS .. 30

9.2.4. PURPOSE .. 31

9.2.5. HOW TO USE DESIGN PATTERNS ... 32

10. DESIGN PATTERNS USING COMPONENT-BASED APPROACH 34

10.1. SO, WAHT IS THE PROBLEM NOW!!? ... 34

10.2. SOLUTION: DESIGN PATTERNS AS CONCRETE REUSABLE

ELEMENTS ... 36

10.2.1. PATTERN-LIKE COMPOSITION OPERATORES 36

10.3. APPLYING THE SOLUTION IN PRACTICE ... 40

10.3.1. OVEAL VIEW .. 40

10.3.2. ATOMIC COMPONENT ... 42

10.3.3. BASIC CONNECTORS .. 46

10.3.4. COMPOSITE COMPOSITION OPERATORS ... 54

10.3.5. A PLAIN IDE AND A SAMPLE SCENARIO .. 62

10.4. FINAL SAY ... 82

11. BIBLIOGRAPHY .. 83

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 4

‎1 table of figures

1. TABLE OF FIGURES

Figure 1: A component with an interface.. 15

Figure 2: A software component like a puzzle ... 16

Figure 3: A component model .. 21

Figure 4: Direct Message Passing .. 23

Figure 5: Indirect message passing ... 23

Figure 6: Message passing in The Component Model 26

Figure 7: Objects interaction .. 28

Figure 8: Formalization of Observer pattern in Disco 36

Figure 9: Atomic and composite components ... 38

Figure 10: Composition operator .. 38

Figure 11: Hierarchy of components and connectors 39

Figure 12: AtomicComponent.java .. 43

Figure 13: .. 44

Figure 14: Class hierarchy for connectors .. 45

Figure 15: The Connetor.java class ... 46

Figure 16: The interface of the connectors and its initialization 47

Figure 17: The general control flow ... 48

Figure 18: Sequencer.java ... 49

Figure 19: The control structure of sequencer .. 50

Figure 20: Pipe.java .. 51

Figure 21: Data flow in Pipe ... 51

Figure 22: Control structure of pipe connector .. 52

Figure 23: Invocation.java ... 53

Figure 24: .. 53

Figure 25: ObserverCC.java ... 54

Figure 26: The control structure of Observer pattern 55

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 5

‎1 table of figures

Figure 27: .. 56

Figure 28: .. 57

Figure 29:CoR.java ... 57

Figure 30: Chain of responsibility pattern .. 58

Figure 31: .. 59

Figure 32: Observer-Cor pattern ... 59

Figure 33: ObserverCoR.java ... 60

Figure 34: .. 61

Figure 35: Observer-Cor pattern control flow structure 62

Figure 36: The whole system hierarchy ... 63

Figure 37: MainWindow.java .. 64

Figure 38: Computation units ... 65

Figure 39: Guiding window .. 66

Figure 40: .. 67

Figure 41: .. 68

Figure 42: .. 68

Figure 43: .. 69

Figure 44: .. 69

Figure 45: .. 70

Figure 46: .. 70

Figure 47: .. 71

Figure 48: .. 71

Figure 49: .. 72

Figure 50: .. 72

Figure 51: .. 73

Figure 52: .. 73

Figure 53: .. 74

Figure 54: .. 74

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 6

‎1 table of figures

Figure 55: .. 75

Figure 56: .. 75

Figure 57: .. 76

Figure 58: .. 76

Figure 59: .. 77

Figure 60: .. 77

Figure 61: .. 78

Figure 62: .. 78

Figure 63: .. 79

Figure 64: .. 79

Figure 65: .. 80

Figure 66: .. 80

Figure 67: .. 81

Figure 68: .. 81

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 7

‎2 formatting and keywords

2. FORMATTING AND KEYWORDS

FORMATTING

With respect to the editing, the following formats are used in the dissertation:

● Page margin; top: 2.8 bottom: 2.25 left: 4 right: 2.4

● The body; font: Verdana, size: 10 spacing: double

● Headings; font: Arial, size: 16(bold), 14, 12, 11 type: capital letters

● Header and footer; font: Verdana, size: 8, type: bold, italic spacing: single

● Quotations; font: Verdana, size: 10, type: italic, spacing: single

● “Note:” comments: font: Verdana, size: 10, type: italic, spacing: single

● Caption for figures: font: Verdana, size: 9, type: bold

● Referencing: type: numerical, ISO 690 in Microsoft Word 2007, automatic

insertion

KEYWORDS

● Component-based software development, Component model

● Design patterns, Composition operator, Exogenous connector

● Atomic/Composite Connector, Atomic/Composite Component

● Reusability, Repository

● Object, Class, Inheritance, Composition, Interface, generic

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 8

‎3 Abstract

3. ABSTRACT

Design patterns are used in object-oriented programming when a problem and its

solution fit a well-known pattern, i.e. the pattern provides the solution to the

problem. It would seem that design patterns should be just as useful for

component-based development. Indeed, in component-based development,

design patterns are potential composition operators. This project will investigate

design patterns that will work as composition operators for components, and

define and implement them.

The following is the set of achievements in this dissertation:

● Understanding, learning, and applying fundamental principles of object-

oriented programming

● Learning and applying some basics and hints of Java programming

language which I was not familiar with

● Getting familiar with Eclipse IDE tool

● Understanding, learning, and applying basic principles of component-based

software development, particularly the concept of reusability since it is a

key topic in this project, as far as it applies to my area of research

● Understanding, learning, and applying the notion of design patterns in

object-oriented programming

● Investigating the problem of using design patterns in current

models(object-oriented paradigm)

● Figuring out how this problem can potentially be solved by redefining design

patterns (but keeping the original meaning, structure, and application the

same) as composition operators in component-based approach

● Implementation of above-mentioned solution

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 9

‎4 declaration

4. DECLARATION

No portion of the work referred to in the dissertation has been submitted in

support of an application for another degree or qualification of this or any other

university or other institute of learning.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 10

‎5 copyright statement

5. COPYRIGHT STATEMENT

(1) The author of this dissertation (including any appendices and/or

schedules to this dissertation) owns any copyright in it (the “Copyright”)

and s/he has given The University of Manchester the right to use such

Copyright for any administrative, promotional, educational and/or

teaching purposes.

(2) Copies of this dissertation, either in full or in extracts, may be made only

in accordance with the regulations of the John Rylands University Library

of Manchester. Details of these regulations may be obtained from the

Librarian. This page must form part of any such copies made.

(3) The ownership of any patents, designs, trademarks and any and all other

intellectual property rights except for the Copyright (the “Intellectual

Property Rights”) and any reproductions of copyright works, for example

graphs and tables (“Reproductions”), which may be described in this

dissertation, may not be owned by the author and may be owned by

third parties. Such Intellectual Property Rights and Reproductions cannot

and must not be made available for use without the prior written

permission of the owner(s) of the relevant Intellectual Property Rights

and/or Reproductions.

(4) Further information on the conditions under which disclosure, publication

and exploitation of this dissertation, the Copyright and any Intellectual

Property Rights and/or Reproductions described in it may take place is

available from the Head of School of Computer Science.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 11

‎6 acknowledgement

6. ACKNOWLEDGEMENT

I would like to take this opportunity to acknowledge my supervisor Dr. Kung-kiu

Lau who inspired me to carry out this research project.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 12

‎7 introduction

7. INTRODUCTION

First, I go through the notion of component-based software development. I also

briefly cover issues facing components reusability and requirements for software

reuse. Next, I elaborate on imperfections existing in current component models

and then solutions are explained on how to overcome those problems. I try to

have a quick review of some aspects of this notion which widen my horizon so

that I can establish a connection between component-based development and

design patterns.

I explain The Component Model (1) and its fundamental principle and that how it

can be employed to implement design patterns for reusability purposes. After

that, I argue what the drawback of using patterns in the context of object-

oriented programming is and how it force us to come up with another view on

design patterns to overcome this drawback. To be more exact, the current

drawback of using design patterns in the context of object-oriented programming

is that in this way design patterns are not implemented and hard-coded such that

they can be reused in the future, i.e. patterns are just explained in a formal way;

however, they are neither coded nor stored and they have to be implemented

each time. Thus, they cannot be reused in reality. I argue that to be reusable and

to achieve code reuse they need to be brought into the context of component-

based development so that they can be stored as a component (composition

operator or composite connector in Component Model) in a repository and be

reused for future purposes. To illustrate this in practice, I have implemented and

composed two design patterns, Observer and Chain of Responsibility, using

fundamental concepts of Component Model. This approach towards design

patterns, however, cannot be applied to all patterns.

In fact, design patterns are standardized and are used in the context of object-

oriented programming; however, they do not include a concrete implementation

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 13

‎7 introduction

but just abstract descriptions of what they are, how they can be used, how they

solve problems. After that, I walk you through the fact that how patterns can be

used or must be used (to achieve code reuse) in the component-based software

development paradigm, particularly in The Component Model.

Note: This component model will be called „The Component Model‟ from now on in

this dissertation.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 14

‎8 component-based software development

8. COMPONENT-BASED SOFTWARE DEVELOPMENT

8.1. MOTIVATIONS

Component-based development is a relatively a new area in the field of software

engineering, promising of a design strategy facilitating the task of software

development. In fact, the elements that Component-based development provides

support this design strategy. Component-based development (2) can be

described as the integration of previously existing software components. In

simple words, Component-based development aims to investigate, design, and

implement large-scale applications using code reuse, that is, by employing pre-

built components. It relieves system analysts from the tedious task of

redesigning and recoding systems by componentising existing packages and

processes. This has a significant effect on the development and modification of

systems in the future especially in large-scale enterprise system. Components

are designed either for business processes or standard scientific application. For

instance, using Component-based development approach An ERP, Enterprise

Resource Planning, offer variety of packages such as manufacturing, supply chain

management, financial, human resource management, and so on which suits

different processes of an enterprise. Typically an enterprise chooses from these

packages in accordance with its business needs. In this way ERP builds an

efficient platform upon which homogenous interacting software components will

be assembled.

“If components are developed independently, it is highly unlikely that they will be

able to cooperate usefully.” (2)

Now imagine what would happen in the absence of components. To satisfy new

needs and business processes, efforts would have to be made from very

preliminary stages and large number of programmers would be needed to handle

all tasks. In contrast, using Component-based development, new components

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 15

‎8 component-based software development

which fulfil new tasks may be built from composition of previously-designed,

previously-implemented and previously-tested components. This results in robust

products. It is the beauty of component-based approach that system developers

can benefit from yields of others. This approach is time-saving, cost-effective,

and maintenance-reducing. It also largely reduces the number of human

resources needed for designing and coding components, resulting in more

productivity.

8.2. CONCEPT OF COMPONENT

The concept of component is loosely defined. In fact, as far as I am concerned,

there is no universally-accepted definition. Each definition tries to give an exact

picture of what a component is and how it functions. In figure 1, 2, and 3, a

component is depicted from different perspectives. In figure 1, you can see an

abstract picture of a component with an interface that enables it to interact with

other components to which it is compatible. In the following chapters, I elaborate

more on what is meant by an interface.

Figure 1: A component with an interface

As I mentioned earlier, there is no universally-agreed definition of what a

component is. All of them, however, have something in common: components as

reusable templates. At this point, I would like to briefly refer to some of those

definitions:

“A component is a unit of software of precise purpose sold to the application

developer community.” (3)

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 16

‎8 component-based software development

”A component is a reusable piece of software in binary form that can be plugged

into other components from other vendors with relatively little effort.” (4)

● A component (5) (6), which normally models real word objects, adheres to

a set of interfaces as a contract, performing a distinctive set of activities

known as the functionality of this component and doing so enforce

components to behave systematically. From this behaviour which is

determined by component‟s contract, developers can figure out whether a

particular component can communicate with others both at design and

deployment phase.

● Components are reusable software elements than can be matched together

like a puzzle (figure 2). In fact, they are building blocks of a larger system.

Figure 2: A software component like a puzzle

8.2.1. PROPERTIES OF A COMPONENT

The most important property of a component might be its reusability feature.

This becomes even more tangible when users of components are not the same as

their developers. (7) In this case, the developers need to design them such that

they can be used and deployed by customers.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 17

‎8 component-based software development

To perform a task a component needs to be bound to a resource described by

component models. Binding of components implies component composition.

Three forms of compositions have been identified: component-component,

component-framework, and framework-framework (6) . Each of them addresses

communications between components, components and frameworks, and frame

works respectively. To put it simply, composition states how components work

together. As it seems, one pre-requisite to achieve this goal is that components

need to be aware of provided and required services of others.

A component is tightly bounded to the component model in which it is designed,

implemented, and deployed. A component‟s properties, therefore, stem from

those of its component model. As an example, design rules, which minimises any

type mismatch among components, are specified by component models and

components have to agree with these rules. I talk about component properties in

more details in the following chapters.

8.3. SOFTWARE REUSE

One of the indispensible features of components is their reusability. Components

are developed systematically in a component models which enforces a set of

behaviours; thus, if a component cannot be reused it is no longer considered to

be a component.

Note: Reuse does not necessarily mean that these reusable elements would be

applied to a new application without any modification. Indeed, after being

selected from existing components, selected components need to be

tailored so as to fit into target applications. This can imply modification.

8.3.1. SOFTWARE REUSE REQUIREMENTS

8.3.1.1. DOCUMENTATION

The documentation should faithfully represent the whole functionality of

interfaces.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 18

‎8 component-based software development

8.3.1.2. INTERFACES

The interface of a component is a visible contact point to outside world, making

users unaware of inside of components and their implementation. The interface

of components also describes components‟ type, which in turn reflects its role

and functionality in a given system. Components can have more than one

interface; it means that they conform to more than one contract, eventually

resulting in a set of approved behaviours. To be more specific, when a

component implements multiple interfaces, it automatically abides by multiple

operations. More detailed, each interface acts as an interactive language for

components to communicate with outside world, that is, other components. This

leads to one of the key principles of Component-based development and object-

oriented programming: there is no way to know about a component or an object

except from its interface. Such ability is known as encapsulation with respect to

programming issues. Naturally, each of these types of a component is then

utilized in an appropriate application it applies to. Component interface needs to

be documented well so as to make their usage more convenient. Recall that not

all languages support multiple interfaces. Some programming languages (Java)

allow and some others disallow usage of more than one interface.

8.3.1.3. CONCEPTUALIZATION

Another requirement is conceptualization of components as well as their

interactions with their environments. That is to say, developers need to equipped

components with a level of abstraction such that it makes components

understandable without recourse to knowing detailed codes.

8.3.1.4. CODE HIDING

With respect to proprietary issues, one of the requirements of component-based

software development is code hiding. It means that developers need to conceal

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 19

‎8 component-based software development

their codes and implementation from being visible to public so that they cannot

be abused.

8.3.2. SOFTWARE REUSE BARRIERS

8.3.2.1. FUNCTIONAL BARRIERS

One of the barriers that potentially erects when designing reusable elements is

functional barriers. Let me first make it clear by making an example. Imagine

installing the GPS system (Global Positioning System) on vehicles. There are two

points to be considered; one, the type of vehicles that the GPS system is to be

installed on and second, the number of services a particular GPS application

offers. Cares need to be taken to choose a sound application so as to avoid

imposing incompatible or excessive services on the system, i.e. a particular GPS

application which would be installed on airplanes would have too many

complicated services for a simple vehicle. With respect to functional barriers, all I

am trying to convey is that not all component-based applications can be

integrated into a new environment as separate building units. As a result, some

services may not function properly.

8.3.2.2. PLATFORM-ARISING BARRIERS

Among other difficulties, I can refer to platform barriers. Nearly all components

are designed and then implemented in a particular programming language, a

certain platform, and using a set of data structures. Therefore, there is likelihood

that they cannot be deployed into another environment. For example, a

component written in .NET may not be integrated in a component models written

in Java. Similarly, different platforms stores information differently such that a

component working in a certain platform may not perform the same tasks in

another platform.

“They cannot be used because the chosen parts do not fit together.” (2)

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 20

‎8 component-based software development

If I can just sum up the main points, when developing a new system using

component-based development, an exhaustive consideration need to be taken to

make sure components which will be applicable and efficient for the new system

would be selected. This is referred to as domain engineering. (2)

8.4. COMPONENT MODELS

8.4.1. AN OVERALL LOOK

Component models can be viewed as a collection of components, their types

(interfaces), and their relations to one another. They determine rules that

components need to comply with. In this manner, components are like extension

to the whole system. A component model functions like a standard agreement for

its components, providing basic infrastructure and services for components‟

design, implementation, composition, and deployment. This improves

predictability. There is no universal agreement on what elements are needed to

make up a component model. Figure 3 shows a general view of a component

model including various parts of the system. Let‟s now look at some of the terms

mentioned in this figure.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 21

‎8 component-based software development

Figure 3: A component model

Component types (black holes in figure 3) make up a component model. As

mentioned earlier, component‟s type is determined by its interface. A component

framework offer different types of runtime services for deployment. The design

environment should be consistent with deployment environment so that pre-built

components can be deployed and be run. This lies in component‟s framework

platform. A component framework functions similarly to an operating system, but

in smaller scale. (6) They are nearly enabled to do whatever an operating system

may do such as starting and terminating components, establishing connection

between them, and managing shared resources. For example, the Enterprise

JavaBeans supports The EJB component model by providing servers and

containers as a framework, where containers deal with components‟ lifecycle and

servers address different required services.

But, how components can connect together? This introduces the notion of

connectors which is of interest of this dissertation. Now let‟s have a quick look to

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 22

‎8 component-based software development

definition of connectors in different component models. As a standard, the

connection should be in proper way. In terms of semantic, components can be

considered to be a computational unit with some in and out ports for required

and provided services respectively. There are various types of connectors in

different component models. For instance, in UML2 and CCM these ports that

designed for required services are distinct from those of provided service, thus

playing a separate role. Another well-known component model is JavaBeans that

employs a container and an Adaptor class, to provide a mechanism to establish a

connection between communicating components (beans). In ADL, Architecture

Description Language, connectors are a part of components and handle

transformation of data between components. This transformation is achieved in

Coordination Languages through a set of compositional channels. In general, two

tasks need to be performed in any component models, first computation and

second communication.

As it can be realized, in component models mentioned above, there are no

distinct entities to perform these 2 tasks. In fact, all of them address both

communication and computation, yet they do not provide separate entities to

accomplish this goal. But, why not having separate entities might be important at

all? In other words, what is the problem of not having such separate entities?

Let me examine this by analysing how components in practice communicate with

one another and they send messages. There are two ways for message sending,

direct and indirect.

The former (figure 4) uses direct method call to invoke other methods, that is,

sending message would be directly from the sender component to the receiver.

This kind of connection has two drawbacks. First, it mixes computation with

communication as connectors are a part of components. Second, it may increase

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 23

‎8 component-based software development

coupling between pair of corresponding components. High coupling is not

desirable whatsoever since it heighten dependency between components.

Figure 4: Direct Message Passing

The latter (figure 5), however, do not increase coupling as much as the former

does because there would be some distinct entities to perform communication

between components; therefore, resulting in separating communication from

computation. In this way messages would not transmit directly from the sender

to the receiver, rather they would be passed through these separate connectors.

Moreover, direct message passing suffers from the problem of competing calls to

the same component, which needs to be addressed by synchronizing

components.

Figure 5: Indirect message passing

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 24

‎8 component-based software development

8.4.2. AN IDEALIZED COMPONENT MODEL

So far, we have looked at some of the basic issues in connection with

components and component-based approach and I also mentioned a couple of

concepts with respect to component models and component composition.

Let me turn now to some of the characteristics of an idealized component model.

An idealized component model should address the following issues:

● Design, implementation, and deployment phases in consistent way

● Life-time of components as they are independent entities

● Providing required services for components

● Components composition

● Starting components, allocating memory to them, handling message

passing, and terminating them

An idealized component model is based on assembly of components as truly

reusable software elements. These reusability needs to be applied in practice

when using and deploying components. It means that there must be a repository

for components so that having been coded, they can be deposited into this

repository and then be retrieved at the time of designing applications. In this

way, components should be composable such that they can be composed into

larger composite components, which in turn can be composed further. (7) To

reach this set of ideals, an idealized component model may have two stages, one

design phase, and second deployment phase, which fit to design and deployment

of phases respectively.

8.4.3. THE COMPONENT MODEL

Note: As I previously mentioned in the introduction, The Component Model term

refers to the component model developed in the University of Manchester

under supervision of K.-K Lau. (1)

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 25

‎8 component-based software development

As it should be clear by now, we witness one common problems associated with

all component models have been covered in previous sections. The problem is

that computation is mixed with communication, i.e. there are no distinct entities

that carry out these tasks separately, and rather messages are passed through

entities which are also responsible for performing computation. In simple words,

when a computation unit needs to call another method in another component, it

does it directly. In addition to this, connectors do not have separate coding, but

they are mixed with computation units. Now to remedy this, I would like to

introduce a new component model (1) as a solution which will form the

infrastructure for the final result of this dissertation, redefining patterns as

composition operators. To be more exact, in the following sections, I demonstrate

how design patterns are defined as composition operators based on this

component model as underlying idea.

In this component model, Exogenous Connectors for Component Models, the

distinguishing feature is encapsulation. It encapsulates computation in

computation unites and communications in exogenous connectors. In other

words, computation is performed and only performed in the computation units

and communication is handled and only handled in exogenous connectors. This

implies that connectors need to be independent entities and therefore, have

segregate implementation. Since connectors are separate elements, they can

therefore be stored in a repository for reusability purposes. The figure 6 shows

how exogenous connectors initiate, manage, and terminate control flow. As you

can see, components do not have any code to call other operations belonging to

other components. Operations are merely invoked by exogenous connectors. As a

result, a component, which is just a computation unit, is executed if and only if it

is invoked by an exogenous connector.

In this component models, any desired application is built as a hierarchy of

different levels of components and connectors in design phase, then in

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 26

‎8 component-based software development

deployment phase they are deployed, and finally they are assigned value at run

time. This model, however, has a disadvantage of imposing preponderance of

such levels. (1)

Figure 6: Message passing in The Component Model

Some supplementary examination is followed up at the end when I open up the

main discussion of redefining patterns as composition operators.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 27

‎9 design patterns in object-oriented programming

9. DESIGN PATTERNS IN OBJECT-ORIENTED

PROGRAMMING

9.1. OVERVIEW

Let‟s begin with a very brief explanation of two programming styles. Object-

oriented paradigm is usually compared and contrasted with structural

programming. The major philosophical difference is that in the structural

programming the centre of focus is on functions (methods, behaviours, actions,

operations, or procedures) whereas object-oriented paradigm in essence focuses

on objects. This makes it possible for the latter to benefit from having everything

in one entity, that is, the object. In fact, objects encapsulate both information,

represented as fields, and methods, representing the set of operations that can

be applied on these fields. An object of type Person for instance, may represent

information such as name, address, age, eye colour, and nationality, and also

some of behaviours of ordinary persons like eating, drinking, sleeping, chatting,

and so on. Finally, the system would be an environment of communicating

objects of type Persons. (Figure 7)

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 28

‎9 design patterns in object-oriented programming

Figure 7: Objects interaction

9.2. ALL ABOUT PATTERNS

9.2.1. WHY DESIGN PATTERNS AT ALL?

I would like now to discuss why object-oriented programming might be a tedious

task. Having identified system requirements as well as the system workflow (this

process is subject to methodology used in kind of the selected software

engineering approach), the key factor in object-oriented design is to break the

system down into a well-established class hierarchy such that it can faithfully

represent the behaviours of the system and accommodates data information. In

addition to this, such class hierarchy needs to consider the potential

developments of the system in the future. In simple words, since classes are

related together, through inheritance and composition, a change in one class may

require a change in others. As it can be realised, it would seem that such a

process needs careful consideration as well as exhaustive efforts to make sure

any possible modification in the future is now minimised.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 29

‎9 design patterns in object-oriented programming

Now the point is in many occasions developers face with the same problems

which happen again and again in various applications. In this case, they come up

with a solution, design it, code it, apply it, and then observe consequences. If

needed, they modify their solutions for best performance. This process, facing

the same problems and discovering solutions, appear to be like a loop that needs

to be repeated by system designers. The point is the same algorithms tend to

reoccur and this is an unwritten principle of software engineering. Now imagine

each programmer wants to design, implement, and use their own solution, what

would happen? They would end up with a set of inconsistent codes which cannot

interact with one another since they were designed separately. Solutions would

probably be intractable and hard to keep up to date.

Well, what is next? How to overcome such obstacle? This is where the design

patterns come. They act like a solution template that can be reused over and

over again provided that they are applicable, i.e. there should be a problem and

its corresponding solution in a given context. A pattern describes a design idea,

representing a reuse culture. This is welcomed in software development process

and considered to be the most significant outcome of applying design patterns.

Such culture minimises repetition of works. Such approach equipped developers

with a higher level of perspective towards the system design, shifting their

thoughts a way from details.

9.2.2. STANDARD DESCRIPTIONS

Design patterns are not defined formally and they are more like an abstract

description of reoccurring problem solving issues, normally represented in terms

of set of interacting objects or classes. At this point, I would like to draw your

attention to some of definitions of design patterns in the literature.

“Each pattern describes a problem which occurs over and over again in our

environment, and then describes the core of the solution to that problem, in such

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 30

‎9 design patterns in object-oriented programming

way that you can use this solution a million times over, without ever doing it the

same way twice.” (8)

“Design pattern is a formal way of documenting a solution to a design problem in

a particular field of expertise.” (9)

“In software engineering, a design pattern is a general reusable solution to a

commonly occurring problem in software design.” (10)

“Patterns provide a means for capturing knowledge about problems and

successful solutions in software development.” (11)

As you may have noticed, all of these definitions have a concept to share and it is

reusability concept. In the two following sections, titled with ingredients and

purposes, I very briefly cover some of the elements constructing patterns and

also what purposes patterns pursue. I then move to some of the guidelines on

how to apply design patterns in practice.

9.2.3. INGREDIENTS

Ingredients of design pattern may be specified as the following:

● Name

― Each pattern has a name. This should be descriptive enough to

reminds us of patterns‟ intent

● Intent

― What patterns do

● Problem

― Each pattern matches to a reoccurring problem

● Solution

― It clearly characterizes how a pattern solve the problem it fits to by

identifying the whole factors including participants, their

responsibilities, and their relationships

http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_design

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 31

‎9 design patterns in object-oriented programming

There is also another type of patterns, named architectural pattern, which is not

of any interest to this dissertation. Architectural patterns, unlike design patterns,

have larger scope and usually involve the whole systems (architectural level)

rather than just a part of the system.

“Architectural patterns are software patterns that offer well-established solutions

to architectural problems in software engineering.” (12)

9.2.4. PURPOSE

Design patterns (8) can be organized in two ways. In terms of:

● Scope

― Patterns deal with either objects or classes. This specifies the scope of

patterns. The former (having object scope) is established dynamically

through composition and the latter (having class scope) is achieved

through class inheritance and therefore it has a compile-time level

● Purpose

― This is indeed the intent of a pattern. It therefore states what patterns

address. They can be grouped in three different categories namely,

creational, structural, and behavioural patterns

9.2.4.1. CREATIONAL PATTERNS

They simply address object creation. Such patterns include Factory and Builder.

9.2.4.2. STRUCTURAL PATTERNS

They simply address object composition. Such patterns include Composite and

Decorator.

9.2.4.3. BEHAVIUORAL PATTERNS

They simply address object interaction. Such patterns include Observer and

Visitor.

http://en.wikipedia.org/wiki/Software_architecture
http://en.wikipedia.org/wiki/Software_engineering

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 32

‎9 design patterns in object-oriented programming

9.2.5. HOW TO USE DESIGN PATTERNS

There are a couple issues that need to be considered when applying patterns.

Normally, the story begins when a system analyst thinks he is facing with a

reoccurring problem that might have a predefined solution. In this case, he needs

to take into account some practises.

● What is the problem?

● Is there any potential pre-identified solution for this? If yes, can it be a

design pattern?

● If it is a pattern, is there any other pattern that can be applied too?

● Is this pattern really more efficient than the simple solution in practice?

● Are there any inconsistencies with other elements in the system if this

pattern is applied?

If a particular pattern was nominated to be applied in the system, developers [

(8), (11)] then should:

(1) Go through the pattern to understand its usage as well as elements

(intent, participants, and structure), and have a look to some sample

codes to get familiar with its application in practice.

(2) Outline required classes as well as interfaces, and give them names

appropriately

(3) Implement operations such that the set of responsibilities and object

communication represented by this pattern is met accordingly

Since design patterns are intertwined with object-oriented programming, being

familiar with professional practices in object-oriented design play a crucial role in

exploiting design patterns.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 33

‎9 design patterns in object-oriented programming

Worth pointing that in (8), three practices are discussed in details as the core

design principles in object-oriented programming and design patterns:

● design to interface

● favour composition over inheritance

● find what varies and encapsulate it

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 34

‎10 design patterns using component-based approach

10. DESIGN PATTERNS USING COMPONENT-BASED

APPROACH

10.1. SO, WAHT IS THE PROBLEM NOW!!?

By now, I have explained the necessary requirements, first the notion of

component-based software development and second design patterns. You have

seen on one hand, the essential elements composing component-based systems

as well as their requirements, and on the other hand, you have got familiar with

the fundamentals of design patterns. As it appears everything is going well and

there is no barriers a head of the system design and development!!! Nonetheless,

as I already signalled in previous chapters, if you more closely examine the

design patterns, you will discover that although in abstract level they are

reusable elements, which facilitate the process of software development, in

practice they do not provide reusability since they are not hard-coded as a single

entity whatsoever and therefore cannot be stored in a repository. To put it

simply, they lack a formal definition that includes coding. In other words, there is

not a universally-applied design and implementation structure. It means that if

they were applicable in applications, each time they have to be coded from

scratch for target applications and this approach would be subjective, as a result

developers just share an abstract description of design patterns, nor a concrete

implementation.

Note: There are some domain-specific patterns, which as their names suggest,

they are just coded for a set of particular applications.

But why such formalization that results in concrete implementation is so

significant at all? One of the benefits of such formalization is that it minimizes

any vagueness, shifting the system developers‟ thinking away from complicated

communication performed by patterns so that they can focus on the fixed

behaviours of patterns in higher abstract level. It means that system designers

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 35

‎10 design patterns using component-based approach

are no longer require to trace the internal communication algorithm of patterns,

rather they simply can concentrate on the object interactions involved in a design

patterns. Most importantly, I can refer to real reusability of patterns as the

second benefit of such formalization. To be more explicit, in practice this may

lead to using patterns as a single building entity in system construction since

they are now independently designed and coded in a generic way and therefore

can be used in any application. This implies that patterns need to be stored in a

repository and then to be retrieved whenever needed.

There have been some efforts to formalize patterns and creating a compositional

language which states this formalization. For instance, (13) suggests a method

named Disco to model communications using classes, relations, and actions at

abstract level. Figure 8 shows an example of Observer pattern formalization

using this method. It is then followed by the combination of this with Mediator

pattern to achieve more complex behaviour. This methodology, however, does

not provide any coding and it merely suggests an abstract description using

notation.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 36

‎10 design patterns using component-based approach

Figure 8: Formalization of Observer pattern in Disco

None of these efforts have managed to adopt an approach by which a pattern can

be defined explicitly with concrete implementation so as to be deposited in

repository.

10.2. SOLUTION: DESIGN PATTERNS AS CONCRETE

REUSABLE ELEMENTS

10.2.1. PATTERN-LIKE COMPOSITION OPERATORES

We have looked at component-based software development principles and I

briefly cover some of the issues relevant to the dissertation such as the concept

of the component and its properties. I then mentioned some of the points

regarding component models and I elaborated on the problems of current

component models, which is not having separate entities, resulting in mixing

computation with communication. This was followed by going through patterns

and raising the problem associated with using patterns in object-oriented

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 37

‎10 design patterns using component-based approach

programming, which is lacking formal definition, leading to not having concrete

implementation.

By considering these 2 problems, I now want to offer a solution thereby a pattern

can be defined and implemented as a separate entity and then deposited in

repository. This solution is inspired by The Component Model I shortly talked

about in previous chapters. In this model, a pattern can be defined,

implemented, and stored in a repository as a composition operator, and then can

be used indefinite number of times without requiring any modification of its

implementation. This mechanism is generic and would work in any application

provided that valid components are supplied, i.e. components that are applicable

to the composition connector can attach to it. Additionally, bringing this solution

into practice, we also remedy the problem of mixing computation and

communication since in this model connectors are defined in a way they just

manage the control flow and components just perform computation. Here, I do

not go through preliminary concepts covered in previous section about The

Component Model but I discuss the structure of The Component Model as it forms

the basic structure of patterns that will be defined as composition operators.

Now let‟s see what is meant by a composition operator and why it can function

like design patterns? To answer this, we need to analyse the ingredients of our

solution which are connectors and components. Basically, the model is composed

of connectors, computation units, and components. Computation units are in fact

responsible for performing computation and in essence they are any files that can

be executed and return a value, if any. For example, in Java programming

language, they can be simple java classes with some methods performing distinct

operations. There are 2 types of components, atomic and composite. (Figure 9)

Before defining atomic and composite components, let‟s have a look at figure 9.

As you can see, there is an entity named invocation connector. The invocation

connector is responsible for invoking the required method inside computation

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 38

‎10 design patterns using component-based approach

unit. This promises the fact that computation is separated from communication

since no computation unit has any code to call methods in other computation

units, that is to say, a method is executed if and only if an invocation connector

invokes it and there is no other way.

Figure 9: Atomic and composite components

An atomic component is composed of a computation unit as well as an invocation

connector. A composite component is composed of a combination of atomic

components and/or composite ones. This kind of construction shapes a hierarchy

of component layers. Now there must be a mechanism to establish a connection

among these layers. This is obtained by composition operators.

Figure 10: Composition operator

Note: The term composition operator is a general term and refers to connectors

whether atomic or composite one. Also, a composition connector is another

term for composition operator

They manage communication and handle control flow. In fact, they do not do

anything, but passing data and invoking methods in proper sequence. Connectors

like components can be atomic or composite. A composite connector is

constructed using atomic ones. To manage control flow faithfully, the connectors

need to represent ordinary control structures like sequencing, branching, and

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 39

‎10 design patterns using component-based approach

looping. Such connectors are Pipe, Sequencer, and Selector. These connectors

are placed on top of atomic and/or composite components to build the hierarchy

levels. In figure 11, the computation units are labelled with alphabetical letters

from A to G. As you can see, each computation unit has an invocation connector

attached to it. Other connectors are then connected to these invocation

connectors. When an application is modelled in this way, the whole system has

one and only one top-level connector. For instance in figure 9, the highest

connector, C, is the top-level connector which in turn has 2 sub-connectors, C

and IC. The control flow always begins at top-level connector of any application.

It would look like the „main (args [])‟ method in Java language. In any Java-

based application, the system would have one and only one main () method from

which the system would be executed.

Figure 11: Hierarchy of components and connectors

Now I would like to discuss what is meant by a composite connector and why

such a connector is of interest of this dissertation. I previously elaborated on

atomic and composite components as well as atomic connectors. A composite

connector is a combination of atomic and/or composite connectors. In other

words, a set of interconnected atomic connectors forms a composite connector or

a composite composition operator.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 40

‎10 design patterns using component-based approach

Note: From now on, for the sake of simplicity I will use the term „composite

connector‟. It would be the same to replace it with‟ composite composition

operator‟

This composite connector can then be regarded as a separate entity exactly like

an atomic connector. It therefore manages control flow, handles communication

in hierarchy levels, and can be deposited in repository. Well, a question may have

been raised in your mind is that if composite connectors function similarly to

atomic ones (managing the flow of control), why do we have composite

connectors then? What is the aim of having such connectors? The answer to this

question is absolutely vital to this dissertation.

What we know from earlier sections is that a composite connector is a set of

interconnected sub-connector. Thus, it performs more complicated control flow

compared to atomic ones and it appears there is no boundary for composing

composite connectors as far as complexity is concerned. That is, any number of

atomic connectors can composed into a composite one. Here is the answer of our

question. There must be intent for composing composite connectors. It means

that since composite connectors represent a complex control structure, a

composite connector is built whenever this control structure is desirable. Such

control structures would be among commonly occurring control structures, i.e.

design patterns. This is the basic idea and I go into details in next chapter.

10.3. APPLYING THE SOLUTION IN PRACTICE

10.3.1. OVEAL VIEW

In this section, I elaborate on how the abstract solution indicated in previous

chapter can be applied in practice. In the previous chapters, I address the

problem of using design patterns in the object oriented design and I also offer

the solution to remedy this problem. The solution is that design patterns need to

be applied in the concept of component-based development so that they can be

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 41

‎10 design patterns using component-based approach

designed, coded, deposited into repository, and then deployed at run time. As I

mentioned earlier, this promises code reuse since the user of such system would

not make any changes to the source code of the components but they just

compose components together in sensible way.

To achieve this goal, there must be a mechanism to redefine patterns in generic

way so that they can work in any application provided that they were applicable

in the given context. My work is inspired by The Component Model (1) that was

described in abstract level in previous chapters. In such component model there

are two basic entities and two basic phases. The former contains components and

connectors and the latter compromises of design phase and deployment phase.

At very first stage, computation units are designed and then stored somewhere.

In the design phase, these computation units are then used for construction of

atomic components. These atomic components are later on composed via

composition operators which are connectors that manage control flow.

You saw earlier, a composite connector is obtained via composition of atomic

and/or composite connectors and I briefly mentioned that there must be intent

for composing connectors together. A composite connector reflects a composite

control flow structure since they encapsulate control. This composite connector

can be designed such that it represents a design pattern. Behavioural pattern in

object oriented paradigm address interaction between objects and that how they

communicate with each other. To exemplify, Observer pattern defines a one to

many dependency between a (a set of) publisher(s) and subscribers in a manner

that whenever the publisher is updated, the subscribers are notified and react

accordingly. This fixed behaviour can potentially be represented by a composite

connector that receive a request passes it through the publisher and receive the

result back and pipe it through subscribers to notify them. In such a design, the

composite connector that serves as a pattern is not aware of the type of the

request being received and the type of the result being piped, it merely enables

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 42

‎10 design patterns using component-based approach

the control flow and passes the result in a predetermined order. In the following

chapters, I explain in details that how such a mechanism can be exploited in

practice to enable a composite connector to play the role of behavioural patterns.

10.3.2. ATOMIC COMPONENT

Our component model compromises of components and connectors. As

mentioned before, there are two types of components, namely atomic and

composite. Composite components are composed of a set of atomic and/or

composite components. As its name indicates, an atomic component is not a

composite element and therefore, it does not rely on other components in terms

of internal structure, i.e. it does not contain any other components. Atomic

components are constructed when an invocation connector is bound to a

computation unit. The figure 12 shows The UML diagram for

AtomicComponent.java class.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 43

‎10 design patterns using component-based approach

Figure 12: AtomicComponent.java

As it is clear, each atomic component has a reference to its invocation connector

of type Invocation.java. Essentially, when an atomic component is instantiated

using its constructor, this reference is assigned a value. The constructor receives

an argument of type File that basically is the computation unit file selected by the

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 44

‎10 design patterns using component-based approach

user. This file is normally selected from the repository through an interactive file

chooser dialog box. The figure 13 shows an excerpt of this.

Figure 13:

As you can see at figure 12 and 13, atomic components have also references to

other objects; most importantly, the reference to an object of type Class, which

is used for invoking the desired operation (method) in the underlying

computation unit. All in all, atomic component packages a computation unit and

the invocation connector such that the invocation connector acts as a contact

point to its corresponding computation unit, invoking one of its methods and

returns the result back. If for some reason the invocation connector fails to

execute the requested method, it returns the error has been occurred.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 45

‎10 design patterns using component-based approach

Figure 14: Class hierarchy for connectors

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 46

‎10 design patterns using component-based approach

10.3.3. BASIC CONNECTORS

Genuinely, there are two types of connectors that construct our model. The first

type is called basic/atomic connectors that can be of type invocation connector,

pipe connector, and sequencer connector. Figure 14 shows an outline of the class

hierarchy in the connector‟s package where all the connectors are defined and

hard-coded. I define ConnectorInterface.java of type Interface, which enforces all

types of connectors to perform two basic operations. It specifies execute() and

exucuteConnector() methods that need to be performed by all connectors

whether atomic or composite. Figure 15 shows a class named „Connector.java‟.

This is basically an abstract class that defines those two basic operations as well

as the data structure for all connectors and therefore all connectors need to

extend this class as a super class.

Figure 15: The Connetor.java class

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 47

‎10 design patterns using component-based approach

A connector is run by calling its execute() method like conn1.execute();. Indeed,

the execute method characterizes the functionality of each connector and

therefore it needs to be overriden separately by different types of connectors.

However, the general outline of this method is almost the same for all

connectors. Each composition connectors, has an interface. (Figure 16) The

interface consists of three lists indicating the set of connectors attached to this

composition operator, the set of operations to be run by these connectors, and

parameters needed for running these operations. Those three lists are initialized

through the constructor of each connector. (Figure 16) Thus, having been

instantiated, a connectors knows what to do since it knows its sub-connectors

and therefore, it just needs to call them by using their execute() methods. This

means that we have an iteration of calling execute() method of each of sub-

connectors. For instance, in figure 16, the first iteration would execution of c1

connector, which in turn invokes m1 operation using p1 parameter.

Figure 16: The interface of the connectors and its initialization

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 48

‎10 design patterns using component-based approach

Figure 17 shows the control flows inside of a composite component with a

connector as its interface. Having been called, the connector starts execution of

its sub-connectors. (For simplicity we assume c1 to c4 are atomic components)

As you can see in the figure 17, there is a predetermined order for execution of

each sub-connector, from one to fourteen.

It is worth mentioning that the order is in fact determined when the connector is

instantiated. Therefore, cares needs to be taken to ensure a proper instantiation.

Figure 17: The general control flow

Note: The figure above is a general concept and it may not be applicable to all

types of connectors. Some connectors like Selector only execute one of

their sub-connectors depending on a condition being received.

The other operation specified in the „ConnectorInterface.java‟ is

executeConnector(). It is hard-coded in the „Connector.java‟ and all other

connectors inherit it. Unlike execute() method, this method will not be

overridden, but it is called in inside each execute() method. This method is

designed for execution of any method at any level of hierarchy. Having been

called, it first identifies the type of the connector being sent as a parameter, and

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 49

‎10 design patterns using component-based approach

then according to this type, it does some adjustment, like preparing arguments,

so that the connector being sent can be executed. At the end, it calls the

connector by invoking its execute() method. This iteration (calling the

executeConnector() inside of each execute() method) will be carried out until it

reaches to an invocation connector, resulting in invoking the actual operation in

underlying computation unit.

To manage the control flow properly, connectors must be designed in a manner

that standard control structures like sequencing, branching, and looping can be

achieved. Among such connectors, I can refer to Sequencer and Pipe as of

interest of this dissertation.

10.3.3.1. SEQUENCER

Figure 18 shows the UML diagram for Sequencer connector. It has its own

implementation of execute method so that it functions according to abstract

definition of the Sequencer connector.

Figure 18: Sequencer.java

Sequencer is a kind of connector which represent sequencing control scheme. It

essentially executes its sub-connectors in a predetermined sequence and returns

any result produced by this set of sub-connectors. (Figure 19)

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 50

‎10 design patterns using component-based approach

Figure 19: The control structure of sequencer

As it can be seen, each Sequencer connector has some sub-components attached

to it. For the sake of simplicity imagine that these sub-components are atomic

ones. The control initiates at top-level connector of each system. In this example,

the top-level connector is sequencer itself. Having received the required

parameters (D1, D3, D5, D7), the sequencer then starts execution of each of its

sub-components and finally returns all the result back (D2, D3, D6, D8) to the

next level up. It is important to note that the sub-components, atomic

components in this example, do not call operations in the other components but

they only receive required parameters, if any, execute the underling operation,

and return the result. In other words, the sequencer handles the control flow

between each of these atomic components.

To achieve this goal, there must be a design policy in place thereby the

sequencer knows the order of execution of its sub components. The policy is very

simple; the order is determined at time of instantiation of sequencer, that is, in

the interface of this connector. (Figure 16)

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 51

‎10 design patterns using component-based approach

10.3.3.2. PIPE

Figure 20 shows the UML diagram for Pipe connector. It has its own

implementation of execute method so that it functions according to abstract

definition of the Pipe connector.

Figure 20: Pipe.java

Pipe is a kind of connector which represent sequencing control scheme along with

piping any produced result from one component to another successively. When

Pipe is instantiated, it is only supplied with the first parameters, D1, required for

the execution of the first method and then other parameters are specified at run

time during the execution of sub-components. (Figure 21)

Figure 21: Data flow in Pipe

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 52

‎10 design patterns using component-based approach

Pipe essentially executes its sub-connectors in a predetermined sequence and

returns any result produced by this set of sub-connectors. (Figure 22) It should

be clear from the figure below that, Pipe executes the first component with the

given data (input parameter) D1, then gets the result back, D2, and sends it to

the next component as its input parameter for execution of underlying method.

In other words, Pipe only receives the first parameters from upper-layer

components and then uses it for execution of first components. This process is

done until all of the sub-connectors are executed and the final result is piped

back to the next level up.

Figure 22: Control structure of pipe connector

10.3.3.3. INVOCATION

Figure 23 shows the UML diagram for Invocation connector. It has its own

implementation of execute method so that it functions according to abstract

definition of the Invocation connector.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 53

‎10 design patterns using component-based approach

Figure 23: Invocation.java

The execute() method of Invocation connector is different from that of other

basic connectors. As it can be seen in figure 23, the signature of execute method

requires two parameters, one is of type Method, which is the underlying

operation to be invoked by this invocation connector, and the other one is the

parameter needed for execution of this method. Invocation connectors first

convert the parameter received, rowArgs, to the right format, finalArgs, so that it

can be used in invoke() method provided by java reflection mechanism. If

invoke() method fails, then the „result‟ would be assigned a value accordingly.

Figure 24:

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 54

‎10 design patterns using component-based approach

10.3.4. COMPOSITE COMPOSITION OPERATORS

So far, we have seen the basic connectors and how they functions. Additionally,

we have came to conclusion that basic connectors can be composed to form more

complex control structure provide that resulting control structure has an intent

behind the scene. This complicated control structure may aim at design patterns,

that is, design patterns can be represented as a composite composition operator

(composite connector). In such a design, patterns have concrete identity and

thus, they can be reused.

In this dissertation, two well-known object-oriented design patterns, Observer

and Chain of Responsibility are defined as composite connectors, ObserverCC and

CoR respectively. The two resulting composite connectors are further composed

together to form a new composite control structure named ObserverCoR.

10.3.4.1. OBSERVER COMPOSITION OPERATOR

Figure 25 shows the UML diagram for ObserverCC connector. It has its own

implementation of execute method so that it functions according to abstract

definition of the Observer design pattern.

Figure 25: ObserverCC.java

A composite connector is a composition of a set of basic and/or composite

connectors. As it can be seen in figure 25, ObserverCC has two references to Pipe

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 55

‎10 design patterns using component-based approach

and Sequencer as its data type in its source code. To be more explicit, the

composite connector ObserverCC is defined in terms of Pipe and Sequencer basic

connectors. (Figure 26) The Observer object-oriented design pattern is intended

to define a one to many dependency between publishers and subscribers.

Looking at the following diagram, we can understand that the Observer pattern

can be represented as a combination of Pipe and Sequencer where the publisher

is attached to the former and the set of subscribers is attached to the latter.

Figure 26: The control structure of Observer pattern

Pipe, as a top-level connector, initiates the control flow by sending data to

publisher. Publisher receives it, changes its state, and then publishes the result.

Next, the returning result is piped to sequencer as input parameter. As you can

see, the value of sequencer‟s parameter is empty at the beginning and indeed

returning result is copied there. Having been received, the parameter is unpacked

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 56

‎10 design patterns using component-based approach

by the sequencer and it is distributed to its sub-components, i.e. the set of

publishers. They finally react accordingly based on the valued being received. Of

course, generally speaking publishers and subscribers need to match together,

that is, they should be a dependency between them so that whenever the

publisher updates, the subscribers are notified and react. Hence, valid

participants need to be selected to be composed by the composite connector

ObserverCC.

Unlike other basic connectors, the ObserverCC‟s constructor differs in terms of

type and number of parameters. It receives five parameters and distributes

parameters to its internal elements, i.e. pipe and sequencer. (Figure 27)

Figure 27:

Later on, ObserverCC uses the references to pipe and sequencer to call their

execute methods in execute method of itself. (Figure 28)

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 57

‎10 design patterns using component-based approach

Figure 28:

10.3.4.2. CHAIN OF RESPOSIBILITY COMPOSITION OPERATOR

Figure 29 shows the UML diagram for CoR connector. It has its own

implementation of execute() method so that it functions according to abstract

definition of the CoR design pattern.

Figure 29:CoR.java

Not only composite connectors, but also basic connectors can represent design

patterns. The chain of responsibility pattern defines a chain of handlers who

receive a common request by a sender and as soon as the request is handled by

first node within the chain, the result is returned back to the sender. This control

scheme pretty much resembles to that of sequencer since in the sequencer also a

parameter (request) is passed to a set of components (handlers) successively.

(Figure 30)

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 58

‎10 design patterns using component-based approach

Figure 30: Chain of responsibility pattern

As it must be clear by now, a sequencer naturally executes each of its sub-

components (they are assumed to be atomic components) successively, thus, In

order to achieve the control structure of the Chain of Responsibility pattern, there

must be some design policy such that as soon as the request is handled, the

control flow returns back. The following excerpt (Figure 31) demonstrates such

policy, indicating that if the result being received from a handler (subResult) is

not of type Exception, therefore it has succeeded and iteration must be stopped.

Indeed, the indicated if() structure is inside of a for() loop that controls the whole

iteration between sub-components, thus the break; terminates the iteration and

flow of control leaves the loop.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 59

‎10 design patterns using component-based approach

Figure 31:

10.3.4.3. OBSERVER-COR COMPOSITION OPERATOR

So far, we have seen how to define the design patterns as composite connectors

so that their reusability is truly achieved in practice. At this point, I would like to

point out that how composite components can be composed together to form a

new composite structure. I explain the composition of ObserverCC and CoR,

which results in ObserverCoR composite connector.

Note: Please note that in object oriented programming language, there is no such

a pattern named ObserverCoR. It is merely defined in this dissertation to

demonstrate the composition of composite connectors.

Figure 32 indicates an outline of the ObserverCoR composite connector.

ObserverCoR composite connector receives a request and passes it to a set of

Figure 32: Observer-Cor pattern

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 60

‎10 design patterns using component-based approach

handlers. After the request is handled by the first handler, the result is sent to

subscribers to notify them. The handlers compose the chain (in Chain of

Responsibility pattern) and play the role of publishers (in Observer pattern). To

be more specific, by combining Observer and COR patterns together, we make it

possible to have more than one publisher. At each time, when a request arrives,

depending on the type of the request on of these publishers is executed and then

the output will be sent to all subscribers regardless of which publisher (handler)

has already been executed. This implies that

● Firstly, the output of all publisher must be of the same type

● Secondly, this output (type of output) needs to be matched to input of all

subscribers. All subscribers also have the same type of input.

These criteria enable ObserverCoR to pipe the output generated by any of

publishers to all subscribers. Figure 33 shows the UML diagram for ObserverCoR

connector. It has its own implementation of execute() method.

Figure 33: ObserverCoR.java

The ObserverCoR composite connector is composed of two composite

composition operators, namely ObserverCC and CoR. (Figure 35) To enforce this

in practice, its constructor is redefined with five parameters for initialization of its

internal elements, i.e. observer and cor. (Figure 34)

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 61

‎10 design patterns using component-based approach

Figure 34:

If you notice to the figure 35, you will find out that the parameters for seq2 is

empty at the time of initialization. It is indeed the output that will be generated

by one of the publishers in the chain. This empty value corresponds to

publisherArgs in the signature of ObserverCoR constructor in figure 34.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 62

‎10 design patterns using component-based approach

Figure 35: Observer-Cor pattern control flow structure

10.3.5. A PLAIN IDE AND A SAMPLE SCENARIO

Up until now, we have witnessed all of the key points of this dissertation. Now, I

like to attract your attention to a plain IDE (Integrated Development

Environment) that brings all discussions we have had in previous chapters in one

place. In other words, it is implementation phase of the solution offered earlier.

The solution, using design patterns in components-based software development,

is discussed in terms of theory in preceding sections and now this simple IDE

brings the solution into action. There would a sample scenario and components

that represents such a scenario.

The IDE is designed in java language with three packages, namely components,

connectors, and project. (Figure 36) The connector package contains almost all of

the classes discussed before, like Connector.java, Pipe.java, and so on. The

component package contains all sample computation units as well as

AtomicComponent.java class which was discussed earlier. Last but not least, the

project package just contains one class named MainWindwo.java, which forms

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 63

‎10 design patterns using component-based approach

the GUI (Graphical User Interface) of the IDE. It therefore needs to import the

two other packages.

Figure 36: The whole system hierarchy

Figure 37 shows the UML diagram of MainWindow.java that constructs all

windows comes up during the execution of the system. It is written using swing

package of java language and complementary comments are given in the source

code. The IDE basically provides the services of

● Allowing users to choose the computation units file from a repository, which

is essentially a pre-defined directory

● Choosing the desired method from computation units so as to be invoked

by its invocation connector

● Giving the atomic and composite components user-generated names so

that they can be used later on during the execution

● Selecting components and composing them together

● Run the final composite connector and see the result

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 64

‎10 design patterns using component-based approach

Figure 37: MainWindow.java

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 65

‎10 design patterns using component-based approach

10.3.5.1. SAMPLE SCENARIO

The sample scenario is that we have a set of manufactures that form the

publisher and a set of retailers and wholesalers that form the subscribers.

Whenever the row material becomes available, the manufacturers build a product

and then dispatch it to the publishers. Depending on the type of the row material

being supplied, at each time one and only of the manufacture uses this row

material and build a new product. At our example, the car manufacture is the

target. It is notified by a message that the row material is available, and then it

builds a new car and passes this product as a message to all subscribers so that

they can purchase it.

Figure 38: Computation units

Here is the computation units used in the sample scenario:

● CarManufacturer.java

● BicycleManufacturer.java

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 66

‎10 design patterns using component-based approach

● ClothManufacturer.java

● Retailer.java

● Wholesaler.java

10.3.5.2. SNAPSHOT OF THE SYSTEM IN ACTION

At this stage, I take you through the snapshots of different stages of running the

IDE. I demonstrate how to use the IDE and that how sample scenario works.

● This is basically the very first window that comes up. It tells you how to use

the IDE and also reminds you of cares that need to be taken when using

the IDE and composing components. It contains some useful guidelines.

Figure 39: Guiding window

● The following window indicates how to deploy the sample scenario using

computation units provided for this scenario.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 67

‎10 design patterns using component-based approach

Figure 40:

● The following window is the main window of the program. It includes a

button for building atomic components on the left-hand side. Having been

created, the components will appear on the component list, titled with <- -

Components- - >.

Having created all the atomic components, we then need to build our composite

ones. To accomplish this, we simply first select all components (in sample

scenario) and then select the Observer-CoR composition operator from the

combo box, and finally press the corresponding button for building the composite

components. After the final composite component is created, it will appear in the

list. At this point, all we do is just selecting it and press Run button. Supply the

right parameter, press okay and the output will be there in the output pane.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 68

‎10 design patterns using component-based approach

Figure 41:

● Selecting the computation units from the repository.

Figure 42:

● Giving it a name.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 69

‎10 design patterns using component-based approach

Figure 43:

● Choosing one method from the list of operations of the computation unit

Figure 44:

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 70

‎10 design patterns using component-based approach

Figure 45:

● As you see, the new atomic component is now in the list

Figure 46:

● Selecting another computation unit and giving it a name

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 71

‎10 design patterns using component-based approach

Figure 47:

Figure 48:

● Choosing the method

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 72

‎10 design patterns using component-based approach

Figure 49:

● Selecting another computation unit and giving it a name

Figure 50:

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 73

‎10 design patterns using component-based approach

Figure 51:

Figure 52:

● So far, we have selected all our publishers. Now we want to select

subscribers which are retailers and wholesaler. Any numbers of these two

atomic components can be created. For simplicity, we now create just one

instance of each.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 74

‎10 design patterns using component-based approach

Figure 53:

Figure 54:

● Choosing the buyProduct() method of subscribers so that whenever the first

publisher publishes the new product, the subscribers can be notified any

buy the corresponding product.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 75

‎10 design patterns using component-based approach

Figure 55:

● Choose the wholesaler as the second subscriber

Figure 56:

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 76

‎10 design patterns using component-based approach

Figure 57:

Figure 58:

● By now, we have built all of our atomic components. At this stage, as it can

be seen, we select all atomic components as well as Observer-Cor

composition operator, and then press build composite component button.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 77

‎10 design patterns using component-based approach

Figure 59:

● Giving it a name

Figure 60:

● Let the system know which atomic component plays the role of publisher

and which one plays the role of subscriber.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 78

‎10 design patterns using component-based approach

Figure 61:

Figure 62:

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 79

‎10 design patterns using component-based approach

Figure 63:

Figure 64:

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 80

‎10 design patterns using component-based approach

Figure 65:

● Selecting the final composite component and then press Run button

Figure 66:

● Putting the input as a message saying that row material is available

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 81

‎10 design patterns using component-based approach

Figure 67:

● Two subscribers have reacted.

Figure 68:

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 82

‎10 design patterns using component-based approach

10.4. FINAL SAY

In a nutshell, we started by going through some of the concepts of component-

based software developments, followed by the notion of design patterns in object

oriented paradigm. Next, I explain what the problem is of using design patterns

in such an environment. Then, to remedy this I offer the solution of using pattern

in the environment of component-based software development as a concrete

reusable element, that is, a composition operator.

To put the issue into perspective, such approach towards patterns makes pattern

reusable so that they are not required to be coded into each application. They

can be designed, coded, and deposited into repository once, and then be

retrieved indefinite number of times. Additionally, this approach enables pattern

to be composed with other components like what we did in case of composing

ObseverCC and CoR.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 83

‎11 Bibliography

11. BIBLIOGRAPHY

1. Exogenous Connectors for Software Components. Lau, K.-K, Velasco

Elizando, P and Wang, Z. s.l. : Springer-Verlag, 2005.

2. Kaur, Kuljit, et al. Towards a Suitable and Systematic Approach for

Component Based Software Development. 2007 : World Academy of Science,

Engineering and Technology.

3. Component Technology. Steel, J. London : International Data, 1996.

4. Microsoft. The Microsoft Object Technology Strategy: Component Software.

1996.

5. Kruchten, Philippe. The Rational Unified Process An Introduction. s.l. :

Addison Wesley, 3rd. Eddition.

6. Bachmann, Felix, et al. Technical Concepts of Component-Based Software

Engineering. s.l. : Carnegie Mellon University, 2000.

7. Software Component Models. Lau, K.-K and Wang, Zheng. s.l. : IEEE, 2007.

8. Gamma, Erich, et al. Design Patterns: Elements of Reusable Object-oriented

Software. Holland : Addison Wesley, 1994.

9. Design Pattern. wikipedia. [Online] [Cited: 02 August 2009.]

http://en.wikipedia.org/wiki/Design_pattern.

10. Design pattern (computer science). wikipedia. [Online] [Cited: 02 August

2009.] http://en.wikipedia.org/wiki/Design_pattern_%28computer_science%29.

11. Bennett, Simon, McRobb, Steve and Farmer, Ray. Object-oriented

System Analysis and Design. s.l. : McGrawHill, 2006.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 84

‎11 Bibliography

12. Architectural pattern (computer science). wikipedia. [Online] [Cited: 02

August 2009.]

http://en.wikipedia.org/wiki/Architectural_pattern_%28computer_science%29.

13. Formalising Design Patterns. Mikkonen, Tommi. Tampere, Finland : IEEE,

1998.

14. Towards Composing Software Components in Both Design and Deployment

Phases. Lau, K.-K, Ling, L and Velasco Elizondo, P. s.l. : Springer, 2007.

15. A compositional approach to active and passive components. Lau, K.-K and

Ntalamagkas, I. s.l. : IEEE, 2008.

16. Composing Components in Design Phase using Exogenous Connectors. Lau,

K.-K, Ling, L and Wang, Z. s.l. : IEEE, 2006.

17. Composite Connectors for Composing Software Components. Lau, K.-K,

Ling, L and Velasco Elizondo, P. s.l. : Springer-Verlag, 2007.

18. Shalloway, Allan and R. Trott, James. Design Patterns Explained. s.l. :

Addison Wesley, 2002.

19. Buschmann, Frank, et al. Pattern-oriented Software Architecture: A

System of Patterns. s.l. : Wiley, 1996.

20. Composite Design Patterns. Riehle, Dirk. Ubilab : ACM, 1997.

Author: Arsalan Sadri

MSc dissertation, University of Manchester, School of Computer Science 85

‎0

